Modified-Chitosan/siRNA Nanoparticles Downregulate Cellular CDX2 Expression and Cross the Gastric Mucus Barrier

نویسندگان

  • Ana Sadio
  • Jenny K. Gustafsson
  • Bruno Pereira
  • Carla Pereira Gomes
  • Gunnar C. Hansson
  • Leonor David
  • Ana Paula Pêgo
  • Raquel Almeida
چکیده

Development of effective non-viral vectors is of crucial importance in the implementation of RNA interference in clinical routine. The localized delivery of siRNAs to the gastrointestinal mucosa is highly desired but faces specific problems such as the stability in gastric acidity conditions and the presence of the mucus barrier. CDX2 is a transcription factor critical for intestinal differentiation being involved in the initiation and maintenance of gastrointestinal diseases. Specifically, it is the trigger of gastric intestinal metaplasia which is a precursor lesion of gastric cancer. Its expression is also altered in colorectal cancer, where it may constitute a lineage-survival oncogene. Our main objective was to develop a nanoparticle-delivery system of siRNA targeting CDX2 using modified chitosan as a vector. CDX2 expression was assessed in gastric carcinoma cell lines and nanoparticles behaviour in gastrointestinal mucus was tested in mouse explants. We show that imidazole-modified chitosan and trimethylchitosan/siRNA nanoparticles are able to downregulate CDX2 expression and overpass the gastric mucus layer but not colonic mucus. This system might constitute a potential therapeutic approach to treat CDX2-dependent gastric lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mucus barrier-triggered disassembly of siRNA nanocarriers.

The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the mucus, potentiated by t...

متن کامل

Targeted siRNA delivery reduces nitric oxide mediated cell death after spinal cord injury

BACKGROUND Traumatic spinal cord injury (SCI) includes the primary insult as well as a sequela of biochemical and cellular cascades that amplifies the initial injury. This degenerative process, known as secondary injury, is often mediated by both reactive oxygen and nitrogen species released from damaged cells. Previous data suggests that dysregulated production of nitric oxide via inducible ni...

متن کامل

Systemic siRNA Delivery via Peptide-Tagged Polymeric Nanoparticles, Targeting PLK1 Gene in a Mouse Xenograft Model of Colorectal Cancer

Polymeric nanoparticles were developed from a series of chemical reactions using chitosan, polyethylene glycol, and a cell-targeting peptide (CP15). The nanoparticles were complexed with PLK1-siRNA. The optimal siRNA loading was achieved at an N : P ratio of 129.2 yielding a nanoparticle size of >200 nm. These nanoparticles were delivered intraperitoneally and tested for efficient delivery, cyt...

متن کامل

Surface-modified nanoparticles enhance transurothelial penetration and delivery of survivin siRNA in treating bladder cancer.

Penetration of the bladder permeability barrier (BPB) is a major challenge when treating bladder diseases via intravesical delivery. To increase transurothelial migration and tissue and tumor cell uptake, poly(lactic-co-glycolic acid; PLGA) nanoparticles (NP) were modified by addition of a low molecular weight (2.5 or 20 kDa) positively charged mucoadhesive polysaccharide, chitosan, to the NP s...

متن کامل

Design of lipid modified polymeric nanoparticles for improvement of oral absorption of insulin

In this study, lipid modified polymeric nanoparticles for oral delivery of insulin was developed. Firstly, chitosan nanoparticles (CS NPs) was prepared by cross-linking of chitosan with triphosphate TPP as the core of the core-shell structured nanocarriers. Then lipid coating chitosan nanoparticles (LCS) was prepared by co-incubation of the CS NPs with EPC liposomes. The morphologies of these n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014